Granger, Clive WJ. "Investigating causal relations by econometric models and cross-spectral methods." Econometrica: journal of the Econometric Society (1969): 424-438.
Texto original em inglês disponível aqui.
RESUMO
Em algumas ocasiões, surge uma dificuldade em determinar a direção da causalidade entre duas variáveis relacionadas e também se há ou não retroalimentação. São propostas definições testáveis de causalidade e retroalimentação e ilustradas pelo uso de modelos simples de duas variáveis. O importante problema da causalidade aparentemente instantânea é discutido, sugerindo que o problema frequentemente ocorre devido à lentidão na gravação de informações ou porque uma classe suficientemente ampla de variáveis causais possíveis não foi usada. Pode ser demonstrado que o espectro cruzado entre duas variáveis pode ser decomposto em duas partes, cada uma relacionada a um único braço causal de uma situação de retroalimentação. Medidas de defasagem causal e força causal podem então ser construídas. Uma generalização desse resultado com o espectro cruzado parcial é sugerida.
INTRODUÇÃO
O objetivo deste artigo é esclarecer as relações entre certas classes de modelos econométricos envolvendo retroalimentação e as funções que surgem na análise espectral, particularmente o espectro cruzado e o espectro cruzado parcial. Causalidade e retroalimentação são aqui definidas de forma explícita e testável. É mostrado que, no caso de duas variáveis, o mecanismo de retroalimentação pode ser decomposto em duas relações causais e que o espectro cruzado pode ser considerado como a soma de dois espectros cruzados, cada um intimamente relacionado com uma das causalidades. As três seções seguintes do artigo introduzem brevemente os aspectos de métodos espectrais, construção de modelos e causalidade que serão necessários posteriormente. A Seção 5 apresenta os resultados para o caso de duas variáveis e a Seção 6 generaliza esses resultados para três variáveis.
MÉTODOS ESPECTRAIS
Se X, é uma série temporal estacionária com média zero, existem duas representações espectrais básicas associadas à série:
(i) a representação de Cramer
Nenhum comentário:
Postar um comentário